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most comprehensive list, which is, however, limited in 
extent, has been given by Ranganathan (1967), and 
are the results of an application of a procedure 
(Ranganathan, 1966) for determining the possible Z" 
values and corresponding angles of rotation associated 
with a particular axis of rotation. The authors have 
determined the axes of rotation and the corresponding 
angles of rotation (co) for all twenty-four ways of 
describing each of the twenty-two coincidence-site re- 
lationships given in column 2 of Table 1. These 
results are presented in Table 2 with the limitation 
that only the form of the axes of rotation are given. 
However, an experimentally determined orientation 
relationship may be compared with the relationships 
presented in Table 2, thus allowing the operative coin- 
cidence-site relationship to be determined readily. The 
more convenient orientation relationship given in 
column 2 of Table 1 may then be adopted, and the 
further crystallographic information contained in Table 
1 utilized directly. 

In Table 2 the results are presented in multiples of 
three colums, the first, second and third column in 
every three gives the axis of rotation, the multiplicity 
and the angle of rotation (co) respectively. For the 
[100], [110] and [111] symmetry axes the angles of 
rotation (90-co, 90+co, 180-co), (180-o9) and (120 
-co, 120+o)) respectively also give rise to the coinci- 
dence-site relationships indicated in column 2. The 
relationship which gives the smallest value of co for a 

particular value of Z is indicated by an asterisk. Table 
2 effectively gives the results of an application of the 
procedure described by Ranganathan (1966) for all 
possible rotations about axes with indices [12 12/3] for 
{(11)2+ (/2)2+ (/3) 2} < 123 which give rise to the coinci- 
dence site relationships with ~ < 3 I. 

The authors are indebted to Mr E. B. Crellin for 
valuable discussions. The award of an S. R. C. student- 
ship is acknowledged by one of us (AFA). 
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The Effect of Refraction in the Small-Angle Diffraction of X-rays from Stacked Lamellae 
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An expression for the scattering of X-rays from a regular stack of lamellae is developed, releasing the 
prior restraint that no refraction may occur. The effect of refraction is to cause deviations from the 
classical Bragg condition. Further, a condition of total reflection is shown to occur within systems 
whose lamellar spacings are greater than a critical value. 

Statement of the problem- 

The analysis of X-ray scattering data generally pro- 
ceeds through a consideration o f  the amplitude of scat- 
tering A(S) as given by 

l ~(X) exp {2rdS. X}dv,,. A(S)=Ae(S) (1) 

Here, Ae(S), 4, X, S, and v x have their usual meanings: 
amplitude of scattering by an isolated electron, electron 

* On leave from Department of Chemical Engineering, 
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density, real space vector, reciprocal space vector, and 
real space volume. This expression is rigorously correct 
(in the kinematic approximation) only if (a) the medi- 
um is non-absorbing and (b) the vector S is permitted 
to vary as the X-ray beam traverses regions of differing 
refractive index. Indeed, absorptive and refractive cor- 
rections are not needed in the analysis of diffraction 
line breadths and peak positions; e.g., the relative er- 
rors in atomic positional analysis are of the order of 
10-5 and can safely be ignored. However, for the parti- 
cular case of diffraction from a lamellar system whose 
elements are 100/~ or more in thickness both absorp- 
tive and refractive effects can become large. The under- 
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lying reason for this increase in importance is the 
greater path length of the beam in passing through one 
lamella at a Bragg angle of some 10 -z rad. For instance, 
in a lamellar stack of alternating A and B sheets, each 
100 A thick, the Bragg angle for Cu Kc~ radiation is 
3.85 x 10 .3 radians and the path length of a ray pene- 
trating either layer at that angle is 2.6/z! The absorption 
of the X-ray beam in passing through such layers at 
the Bragg angle is great enough to reduce the effective 
number of scattering plates to a relatively small number 
and to cause a broadening of the X-ray diffraction line. 
This effect has been treated in a previous paper (Schultz, 
1970). In the present work, we shall treat the effect of 
the change of the scattering vector S as it passes 
through alternating lamellar regions of higher and 
lower refractive index. 

The idealized situation is depicted in Fig. 1. We en- 
vision a regular, alternating stack of A and B lamellae, 
the stack itself embedded in a medium of the same 
average composition as the stack. The electron densities 
0 and the refractive deviants fi of the three regions con- 
sidered are Qave, 01, Q2 and fiave, t~l, t~2. The normal 

I i i  pA ~ 6A e~"~W-.. ~ ' l  / 1"~ A t ,__6 B ~ - ~ X ~  Y / /  B 

I/,,B - - - - - . a . ~  B 

Fig. 1. Scattering from an alternating series of A and B platelets 
embedded in a medium whose properties are the mass 
averages of those of the A and B platelets. 

Bragg path is exemplified by the dashed line and is to 
be compared with the new path VWXYZ.  What is par- 
ticularly to be noted is that the ray passing through the 
stack has a more tortuous path than it would have 
were it not bent in crossing the several phase bounda- 
ries. Clearly, the diffracting condition is altered by this 
consideration. In particular, the longer path requires 
a higher glancing angle than the 0 predicted by the clas- 
sical Bragg condition, in order that the diffracted rays 
may still emerge in phase in the medium of average 
density. As lamellae become thicker, the glancing angle 
will decrease until it corresponds to the critical angle 
for complete reflection. Lamellar spacings larger than 
this will exhibit only total reflection; no Bragg scatter- 
ing will be present. 

In the following sections, these intuitive ideas are 
quantified. We shall see that deviations from the clas- 
sical Bragg condition begin to become important some- 
where in the range of 100 to 1000 A in lamellar spa- 
cings, depending upon the scattering system. We shall 
see also that the condition of total reflection may be 
reached at an angle equivalent to that for diffraction. 
Lamellar spacings equal to or larger than that asso- 
ciated with the onset of total reflection show no dif- 
fraction effect. 

Geometrical analysis of the refractive effect 

The condition of constructive interference is defined by 
the geometry of Fig. 2. The system with which we work 
here is a regular, alternating stacking of A and B plates. 
The incident beam reaches the 'top' surface of the 
stack by passing through a medium whose properties 
are the average of the system. We shall take the mean 
density and refractive index in the stack to also be given 
by such averages. We let 0 be the glancing angle for en- 
trance to the stack and define 0,4 and 0B as in Fig. 2. 

"~ /~AVERAGE MEDIUM//~ / 
. PLANE "~/ ~ / %(/ PLANE ,4 \" RO(WAVE T /\ WAVE / 

Fig. 2. Geometrical construction for calculating interference relations for a plane wave incident on the lamellar stack. 
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We shall represent the A and B lamellae by the vectors 
1A and In, such that/,4 and 18 are the thicknesses of the 
plates and such that the directions of la and In are nor- 
mal to the platelets. Finally, we take the wave vectors 
]kl = 1/2 in the average medium, A lamellae, and B la- 
mellae to be kave, kA and kn, respectively. Using these 
definitions, the condition for constructive interference 
becomes 

p kAIA kBIB 
- -  . q - _ _  

2 sin OA sin OB 

--(IA cot OA + IB cot OB)kave COS 0, (2) 

where p is an integer. 
We now seek an equation written in terms of the 

average medium diffraction variables kave and 0. The 
condition (2) will then be directly comparable with the 
condition of in-phase scattering written according to a 
simple Bragg relation. 

Recalling that the index of refraction for X-rays may 
be written as n = 1 -  f, we can now write kA and kB in 
terms of kave and of the quantities 6,4, fiB, and fare in 
the three media and we can also write OA and OB in 
terms of 0, hA, riB, and nave. In all of the following we 
assume Qa > ~B. The wave vectors' magnitudes are thus 

k A = [ 1  q-- ( l a v e - -  fA) lkave  (3) 

k B = [ 1  - - ( f B - - f A ) l k A  . (4) 
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Fig. 3. Effect of material and period of  stacking on the devia- 
t ion of 0 f rom the classical Bragg angle 00. 

The angle 0A is determined from the refractive condi- 
tion 

cos 0A = [1 - (&v~-  fA)] cos 0 .  (5) 

Similarly, 
1 

COS OB = COS OA. (6) 
[1 - (fiB-- fia)] 

We may now write the diffraction condition explicitly 
in terms of 0 and the material constants fa  and lB. We 
first note that the average value of f is given by 

IA fA-b IB f B = ( I _ X ) f A + X f B  " (7) 

For a polymeric system X can be considered the volume 
fraction crystallinity if the B lamella is a crystal and the 
A layer is amorphous. Using (7), the quanity ( f A -  fare) 
found in (3) becomes 

l a v e - -  fA = X ( f B - -  f A) = X A f  . (8) 

Using equations (3) to (8), the diffraction condition be- 
comes 

kave[A - - -  [(1 +XAf) -cos  0.4 cos 0] 
sin 0A 

ka,,elB + ~ [(1 - A f )  (1 + X A f ) -  cos 0a cos 0] 

kavelA f (1 + X A f ) - ( 1 - X d f )  cosZ0)'~ 
- s-~O ]. [ 1 - ( 1 - X A f )  zcos 20]]~ J 

e/ os ° j 
+ sin 0 ~ - - ) - ~ ( i - - - ~ i ] ~  • 

[ 1 -  [ ~-Z~-~ ) c°sZ0] 

(9) 

In general, Af will be of the order of 10 -6. Further, 0 is 
expected to be of the order of 10 .2 or smaller for perio- 
dicities of 10 z A or greater and for X-ray wavelengths 
of the order of 1 A. Thus (9) can be simplified by using 
the appropriate approximations dealing with small de- 
viations from unity and by neglecting products of small 
numbers. Using these approximations and noting that 
X=IB/(IA+IB)=I--IA/(IA+IB), we have 

Material 
Polyethylene 
Polyoxymethylene 
78 A1-22 Zn  

a Miller & Nielsen (1961). 
b Barrett  & Massalski (1966). 
c Typical values. 
d Hansen (1936). 

Table 1. Material parameters 

0 (g. cm-3) OQo × 106 
Phase A Phase B Phase A Phase B 

0.85 a 1.00 a 3.47 2-95 
1.25 a 1.51 a 4.93 3.94 
2.70 ~ 6.51 b 15-49 9.68 

X 
0.7 c 
0.7 c 
0.25 a 

Afioo × 106 
0"52 
0"99 
5"81 
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P =sin 00 -~ ( l - X )  
2ka,,e(IA + In) sin 0 

sin20 + XAJ(2 - sin 2 O) ] 
x .[sin 2 0 + XAJ(2 - 2 sin z O) - (XAf)Z(1 - sin 2 O) 1/z 

X ~_.. s!nzO-(1-X)Afi(2-sinzO)-(AJ)Z(1-sinzO+XsinzO) [ 
+ - ~ 0 -  [ [sin 20--O-L--x~-g(2-222 ~ O)--~----4X-Z-- X ~ ~ ) z ( [ - - s i n  2 0)~/2-J 

X 
_'-' (1-X)sin 0 [ s in /0+  2XAJ] 1/2 4- s in--O [sin2 0 -2 (1 -X)AJ ] I /2  

2WAJ ] x/z [ 1 2(1 - X)A6 1/z 
=sin 0{ ( 1 - X )  [ l +  si-~-~ff ] + X  sinZ 0 ] } .  (10) 

Here 0o is the classically calculated Bragg angle. Equa- 
tion (10) is our final expression for the diffraction from 
a lamellar system. 

Application of the basic diffraction formula 

Equation (10) can be used directly to evaluate the effect 
of refraction on the scattering of X-rays by lamellar 
systems. One need only first obtain values of the con- 
stants J. Having these, the quotient sin 00/sin 0 can be 
plotted against sin 0 or sin 00. However, in order to de- 
pict more positively the morphological conditions of 
the problem, we have plotted sin 00/sin 0 versus IA + 18, 
the periodicity of stacking, deriving the periodicity 
from the condition IA + 18 =2/2 sin 0o. Fig. 3 shows the 
results of this calculation for the three typical lamellar 
systems, polyethylene (PE) of 70 ¢olume per cent crys- 
tallinity, polyoxymethylene (POM) of 70 volume per 
cent crystallinity, and the spinodal alloy system 78 
A1-22 Zn, the material parameters of which are shown 
in Table 1. This spinodal alloy was chosen to represent 
non-polymeric materials since it has been studied 
(Rundman & Hilliard, 1967) using X-ray small-angle 
scattering. 

There are several notable features in Fig. 2. First, we 
notice that below 200 A, there is very little refraction ef- 
fect for any system analyzed here. For the polymeric 
systems, the repeat spacings associated with a 5 % cor- 
rection are 710 and 960 A. for POM and PE respectively. 
Most published data fall below these regions; hence, 
corrections will be necessary only in extreme cases. Sec- 
ondly, we notice cut-off values of/.4 + 18 above which 
no diffraction is to be observed. These critical values 
correspond to the condition 

2AJ 
(1 - X )  sinZ Oc - 1 .  

At this critical angle Oc the radical on the rightmost 
term of (10) becomes imaginary. Physically, what hap- 
pens is that the X-ray, having passed through the less 
dense layer A, is totally reflected from the more dense 
B. The X-ray beam will then pursue a zigzag course 
through the stack, reflecting alternately from the top 
and bottom boundaries of the A layer. This condition 
is depicted in Fig. 4. Thus for all lamellar spacings 

larger than (IA + lB)c, the reflection will be total and the 
small-angle intensity versus receiving angle curve will 
appear as shown schematically in Fig. 5. The degree of 
approach of the actual curve to the step function in- 
creases as the quantity e =(2/4zO#/Ac5 approaches zero 
(Compton & Allison, 1935) (p being the linear absorp- 
tion coefficient of the denser lamellae); the deviation 
from a step function is a result of absorption of the 
X-ray reflecting platelets. In the three typical materials 
used as examples above, e is of the order of 10 -2. Fin- 
ally, we note that the magnitude of the refractive effect 
prior to total reflection is dependent very much on the 
value of X. This can be seen in Fig. 2. In Fig. 2, the two 
polymers have 6's differing by nearly a factor of 2. 
Their limiting values of sin 00/sin 0 are, nevertheless, 
identical. Further, it is easily seen that sin 00/sin 0 be- 
comes unity at X = 0  and X = I .  The condition of 
greatest refractive correction occurs at X=½. 

8B> 8A 

B 

[ B 
A I .  

Fig. 4. The course of the 'channeled' X-ray beam in the condi- 
tion of total reflection. 

i I 

0 C 

RECEIVING ANGLE, 0 

Fig. 5. Ideal intensity versus angle curve for the condition of 
total reflection (full curve). The broken curve represents step 
function approached asymptotically as (2/4zr)p/A6 becomes 
very small. 
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Summary 

It has been demonstrated that the increase in beam 
path due to changing refractive indices causes a sub- 
stantial deviation from classical Bragg conditions at 
very small angles. The effect becomes more pronounced 
as the density difference between lamellar types in- 
creases and as the relative thickness of the two types 
approach each other. Below a critical angle 0e diffrac- 
tion is replaced by total reflection of the X-ray 
beam. 
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Hartman has shown how the centres of molecules may sometimes be located when the observed 
morphology is not that predicted by the Donnay-Harker law and how further information may be 
obtained by the periodic-bond-chain method. The method outlined here shows how the two methods 
may be combined, either by using structure-factor charts, or by a series summation analogous to a 
Fourier summation. 

Introduction 

Hartman (1968) has shown how it is possible to locate 
the centres of molecules for crystals which do not obey 
the Donnay & Harker (1937) law. He has also shown 
how additional information can be obtained about the 
centres by the periodic-bond-chain method. 

The D o n n a y - H a r k e r  rule for crystal morphology 
leads to the expectation that the prominence of crystal 
forms should be in the order of the reticular densities 
(lattice points per unit area) of the corresponding 
planes. That is in the order of decreasing d~t ,  planes 
which correspond to space group absences being omit- 
ted from the list. 

Har tman supposes that if a low order form {hkl} 
is absent this is because the interplanar spacing is 
dnk~/n where n is probably 2. If the centres of the mole- 
cules are at Xl, Yl, Zl, and x2, Y2, z2 then 

(x2 - xx)h + (Yz- yl)k + (zz-  Zl)l= 1 In. (1) 

If Xz, Yx, zb and x2, Y2, z2 are related by symmetry it 
is possible to substitute the expressions for the equiva- 
lent positions and to solve equation (1). 

One method of solving the equation is to regard the 
structure as being composed of point atoms at the cen- 
troids of the molecules and to use structure factor 
graphs for the planes corresponding to the absent 
forms to find the possible positions for the centroids. 
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Fig. l. ~-(NSOCI)3. Structure factor graphs for 011, 101, and 020. The nodes are shown by alternate dots and dashes. Positions 
of the centres of the molecules are shown by crosses, the experimental values thus 0 .  


